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ABSTRACT 
This paper presents a computational model of encoding and separation of episodic events via Dentate Gyrus sub 

region of hippocampus. The proposed model is implemented using adaptive resonance theory (ART) neural 

network. The model incorporates the proposed method encoding of episodes in binary patterns. The proposed 

model is capable of achieving high level of pattern encoding and separation. The separation achieved for 

different episodes and events shown by the results are very good depending upon the vigilance parameter of the 

model. Vigilance parameter is assumed to be correlated to attention attribute while perceiving an episode of an 

event.   

Keywords - Dentate Gyrus Computation, Episodic memory encoding, episode separation, ART network, 

hippocampus computational model.

I. INTRODUCTION 
An episode is a series of related events. 

Intuitively, episodic memory is the memory of 

experiences, storing and recalling events including 

time and location. The hippocampus is an essential 

brain region in episodic memory, the storage and 

recall of series of events in space and time. Episodic 

memory is inherently related to the storage and recall 

of sequences of events. Episodes must be stored with 

one-shot learning, as humans and animals need not 

experience an episode many times to remember it. 

This storage and recall of sequences of events is 

hypothesized as a role of the hippocampus. 

 

1.1 HIPPOCAMPUS 

The hippocampus as well as its subregions 

are also referred to as cornu ammonis (CA), 

Ammon‘s horn, due to the intact hippocampus‘s 

hornlike shape. The hippocampus proper consists of 

two major sub regions: CA1 and CA3 [1]. The 

hippocampal formation includes the hippocampus 

proper, the dentate gyrus (DG), and the subiculum 

(and related structures)[2]. Between CA1 and CA3, 

resides a narrow sub region, CA2, which  researchers 

generally ignore[5]. The subiculum, presubiculum, 

and parasubiculum are thought to be little more than 

an output relay from CA1 to various neocortical 

regions [6] [34-36], the neurons of the DG and CA 

regions: granule neurons, mossy neurons, pyramidal 

neurons, and inhibitory interneurons [3]. CA3 and 

CA1 pyramidal neurons have large somas and 

branching apical and basal dendrites. Dentate Gyrus 

granule neurons have small somas and branching 

apical dendrites [3].  The DG has two excitatory 

neurons types: granule neurons and mossy neurons. 

Granule neurons are the only principal type in the 

DG, meaning only granule axons project out to other 

parts of the hippocampus (or brain). Mossy neurons 

are interneurons, the only known excitatory 

interneuron in the hippocampus. Granule neurons are 

small and densely packed in the granule layer of the 

DG, with their numbers estimated at about 1 million 

in the rat [5]. Their apical dendrites extend into the 

molecular layer; they have no basal dendrites. They 

spike only sparsely with about one-half of one 

percent of the population active during active 

behavior [4]. Their axons, mossy fibers, project both 

into the hilus (layer of the DG), connecting to mossy 

neurons apical dendrites, and into the CA3, driving 

pyramidal neurons; they drive inhibitory neurons in 

both areas as well. Inputs to granule neurons come 

from the perforant path (entorhinal cortex, layer II) 

and from the mossy neurons in the hilus. 

The basic connectivity between regions of 

the hippocampus has long been known, the 

trisynaptic circuit.  The basic schematic of 

hippocampal connectivity is a simple trisynaptic 

circuit that describes the connectivity among 

excitatory neurons between hippocampal sub regions 

(Figure1) [7]. In the trisynaptic circuit, axons from 

the perforant path fan out, innervating DG granule 

neurons (and CA3 pyramidal neurons). 
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Figure1. The basic connectivity of the 

hippocampus is a trisynaptic circuit. Within a 

coronal slice, entorhinal cortex (EC) excites 

dentate gyrus (DG) granule neurons via the 

perforant path (PP). Granule neurons project 

their mossy fibers (MF) onto CA3 pyramidal 

neurons. CA3 neurons send Schaffer collateral 

(SC) axons to excite CA1 pyramidal neurons, the 

output of the hippocampus (to EC).[7] 

 

Granule neurons project their axons (mossy 

fibers) onto synapses on CA3 pyramidal neurons. 

CA3 pyramidal neuron axons (Schaffer collaterals) 

fan out onto synapses on CA1 pyramidal neurons. 

Finally, CA1 pyramidal neurons project axons back 

to the EC. For a long period, neuroscientists assumed 

this simple circuit was responsible for all 

hippocampal processing, and although it provided a 

good starting point, it lacked many potentially 

important connections observed in the hippocampus 

both within each region and between regions. 

 

1.2 LONG-TERM POTENTIATION AND DEPRESSION 

Long-term potentiation (LTP) and long-

term depression (LTD) are long-lasting (more than 

30 minutes) increases and decreases in synaptic 

efficacy. LTP (and later LTD) was first discovered in 

the hippocampus [8]. The mechanics of LTP and 

LTD have been extensively studied but are only 

partially understood. The most studied synapse is the 

excitatory, glutamatergic Schaffer collateral synapse 

from CA3 pyramidal neurons to CA1 pyramidal 

neurons. Schaffer collateral (and many other types 

of) LTP and LTD are NMDA dependent. Many other 

types of LTP and LTD are independent of NMDA, 

such as one type from the mossy fibers onto CA3 

pyramidal neurons.[3] When NMDA-receptor 

(NMDAR) gated synaptic channels are blocked by 

AP5, synapses resist both LTP and LTD [9]. 

NMDAR channels require both presynaptic input 

(glutamate) and postsynaptic depolarization to 

relieve a magnesium block at hyperpolarized 

potentials. When the block is relieved by 

depolarization and the channel activated by 

glutamate, sodium and calcium flow into a synaptic 

spine head. Evidence suggests that calcium influx 

through NMDAR channels determines the sign of 

synaptic change. Low calcium influx results on 

average in no change, medium influx in depression, 

high influx in potentiation [9]. Calcium must flow 

through NMDAR channels; other sources are 

ineffective. Calcium triggers chemical cascades that 

add and remove (fast) AMPA-receptor (AMPAR) 

gated channels to and from the synapse [10]. A 

lengthy list of neuromodulators, neuropeptides, and 

intracellular messenger molecules influence LTP and 

LTD, through their influence on calcium or by other 

means. A key molecule in the synaptic spine is 

CaMKII. Calcium acts on CaMKII, whose 

phosphorylation is necessary and possibly sufficient 

for LTP [10]. CaMKII is ideal for maintaining 

synaptic strength as it autophosphorylates. Once 

calcium drives phosphorylation beyond a threshold, 

CaMKII drives it own activation. Once the spine‘s 

calcium level decays back to baseline levels, models 

suggest CaMKII activation settles at one of two 

active levels, nearly completely phosphorylated or 

dephosphorylated [11]. Phosphorylated CaMKII is 

implicated in realizing LTP by (indirectly) inserting 

fast excitatory (voltage-independent) AMPAR gated 

synaptic channels into the spine membrane. In the 

hippocampus, depressed excitatory synapses include 

only NMDAR channels, whereas potentiated 

synapses include AMPAR channels as well [9]. The 

bistable activation of CaMKII suggests that 

excitatory synapses are binary; they include or 

exclude AMPAR channels. Recent observations 

support such a conclusion that individual synapses 

are binary weighted, depending on whether they 

express AMPA-gated channels [12], suggesting that 

graded synaptic strengths are merely a function of 

numerous synaptic contacts, some fraction of which 

are potentiated. On the other hand, the influenced of 

numerous intracellular and extracellular processes, 

AMPAR and NMDAR channels‘ number, subunit 

types, and probability of presynaptic release, suggest 

that synapses are graded. For example, even if a 

synapse has inserted AMPAR channels, a reduced 

probability of presynaptic release would weaken the 

average effect of the synapse on the neuron. Also, 

debate continues as to whether LTP and LTD are 

two sides of the same process, both influencing 

AMPAR channels, or if they manifest in entirely 

different ways with one affecting the postsynaptic 

neuron and other the presynaptic one. Even with 

(fixed weighted) binary AMPAR expression, 

synapses are not truly off or on due to their NMDAR 

channels. NMDAR channels are effective, even in 
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the absence of AMPAR channels. Although synapses 

are often modeled as having binary weights, the 

presence of NMDAR channels at depressed 

excitatory synapses gives them the opportunity to 

drive the neuron anytime its membrane is 

depolarized. In fact, current through NMDAR 

channels is the dominant source of charge at 

excitatory synapses: The NMDAR channel‘s time 

constant (on the order of 100ms) is much longer than 

that of the AMPAR channel (a few ms). So even 

though its peak conductance is usually lower (at 

potentiated synapses), its influence is significant. 

Many induction protocols have been used to elicit 

LTP and LTD, including long highfrequency 

(100Hz) bursts for LTP and long low-frequency 

(5Hz) spikes for LTD. More recently LTP and LTD 

were found to be sensitive to spike timing. 

 

1.3 HIPPOCAMPAL CIRCUITRY AND 

COMPUTATION 

The unique multi-layered circuitry of the 

hippocampus, summarized in Figure 1, has intrigued 

computational neuroscientists interested in 

unravelling how the hippocampus achieves its 

unique encoding capabilities. Within the 

PHR(parahippocampal region), the EC is the major 

input and output region for the hippocampus. In the 

hippocampus proper, activity passes in turn through 

the DG and CA3 and CA1 fields—the so-called 

‗‗trisynaptic circuit‘‘(Figure3)—and back to the 

EC(Figure2). The principal cells of the DG greatly 

outnumber those of the EC[13], while having much 

lower activity levels [14][15]. Thus, mapping from 

the EC to the DG results in a highdimensional, 

extremely sparse neural code, likely due to the 

unique network of principal neurons and inhibitory 

neurons in the DG and adjacent hilar region [16]. 

The DG in turn projects to the CA3 field via mossy 

fiber synapses; during encoding, a sparse pattern of 

activation in the DG mandatorily causes a 

postsynaptic CA3 cell to fire[17][18]. DG—

representing the mossy fiber synapses—are very 

sparse, but 100 times larger in magnitude than other 

weights in the circuit so that the dentate input 

dominates in the calculation of the CA3 activations 

during learning an episode. 

 
Figure2. Input of episodic pattern and processing 

schema of hippocampus sub regions 

 

 
Figure3. Tri-synaptic circuitry of Hippocampus 

      

The study episodic memory tasks,  have 

emphasized the role of the hippocampus in the rapid 

encoding of episodic memories.  Computational 

models play an important role in extending our 

understanding of the neural bases of learning and 

memory. By simplifying and isolating core 

principles of brain design, computational models 

help us understand which aspects of brain anatomy, 

circuitry and neural function are responsible for 

particular types of behavior [19]. In many episodic 

memory models, the hippocampal system is assumed 

to form relatively sparse patterns that overlap less 

than the input patterns from which they are formed 

[20][21].    The hippocampus is involved in encoding 

and integrating contextual information. Recently, it 

has been suggested that the dorsal dentate gyrus 

(dDG) hippocampal sub region may mediate the 

formation of contextual representations of the spatial 

environment through a conjunctive encoding process 



Sudhakar Tripathi et al Int. Journal of Engineering Research and Applications             www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 1( Version 2), January 2014, pp.451-460 

 

 
www.ijera.com                                                                                                                              454 | P a g e  

whereby incoming multimodal information is 

integrated into a single higher-order representation 

[22]. DG encodes the episodic patterns to achieve 

higher separation and less interference [33]. Based 

on anatomical descriptions of the hippocampal 

formation, the DG provides the main input zone for 

the HPP and receives its major cortical input from 

the entorhinal cortex (EC) via the perforant pathway 

(PP)[23] . The EC inputs to the DG can be divided 

into a medial and lateral component [25]. The medial 

EC (MEC) input to the DG conveys spatial 

information and the lateral EC (LEC) input conveys 

no spatial information [24,25] It has been suggested 

that the DG may use a conjunctive encoding process 

to integrate multiple sensory inputs from medial and 

lateral portions of the EC into a single spatial 

representation [25]. In the present work a  

computational model of encoding and separation via 

DG sub region of hippocampus is presented.   

 

II. MATERIALS AND METHODS 
The artificial neural network model is  

presented in this paper(ART2 network) that 

simulates the role of Dentate Gyrus (DG) in episodic 

memory formation in the hippocampus.  

In  hippocampus formation input presented 

by HLCC to EC is fetched to the hippocampus 

formation (i.e. EC,DG,CA3,CA1and SC) regions 

through neuronal interconnections between their 

neuronal sub regions. The input presented by HLCC 

to EC is first encoded by EC and then fetched to DG 

during encoding and memorization process of 

episodes in episodic memory formation. The main 

task that is incorporated by DG is to encode and 

store the episodic patterns in such a way so that 

higher separation and minimum interference is 

achieved. DG works as pattern separator by 

detecting bindings in entities of an episodic pattern. 

The input episodic pattern  from EC to DG is 

encoded using ALGO1proposed in this work . DG 

stores the encoded pattern in sparse manner and 

output of DG is then fetched to CA3 region which 

further memorizes the episodic pattern. The process 

encoding and memorization of episodic pattern by 

DG is presented in detail in this work. 

In the present work the process of DG is 

modelled using ART2 ANN model which ia a 

specialised self-organising neural network capable of 

dealing with stability-plasticity dilemma of learning 

in neural networks. This is an unsupervised feed 

forward neural network which generates cluster 

centres for various episodic patterns presented to DG 

with minimum interference to achieve sparseness 

and higher separation between episodic patterns. 

 

2.1 EPISODIC PATTERN ENCODING OF EC TO DG 

SYNAPSE INPUTS 

In encoding the episodes it is assumed that 

in whatever manner the episode is sensed by sensory 

organs and perceived by brain, ultimately each 

episode can be represented in sentential form. The 

representation of episodes in sentential form is 

independent of how it is perceived such as visual, 

auditory or any other sensory inputs. In this work it 

is assumed that each episode is represented in 

sentential form comprising of episodic entities. Each 

episode comprises of entities, temporal and spatial 

information such as who, what, when, where, whom 

etc. The encoding scheme of the inputs received 

from EC and to be fetched to DG is described by 

ALGO1. 

        

ALGO1.  Episode Encoding 

1. Represent episodic input of EC in sentential 

form. 

2. Use ‗b‘ bit representation of each letter in the 

sentence. 

    Where b is highest index in a language     

     starting from 1. 

     e.g. in English language letters a-z are   

     indexed from 1-26. 

     For space use $ with index 0. And b bit   

     representation 

     For English language b=5 as highest   

     index 26 can be represented by 5 bits.  

3. Pad each space between words of the sentential 

form with $. 

4. Set maximum number of connections to DG 

from EC to Nmax. 

     Nmax= number of elements in input  

     vector. 

5. Count length(number of letters) of padded 

Episode Ecount= le. 

6. Encode in binary the padded sentential form of 

episode using b bits for each letter. 

7.  Append (Nmax-b*le) 0‘s in the end of each 

sentential episode to make each episode of equal 

length. 

8. Epc=  is final binary encoding of episode to be 

presented to DG. 
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Example: 

Event: give 

Input  Episode:   ram gave a book to sita yesterday 

       Padded Episode:  

                     ram$gave$a$book$to$sita$yesterday 

               b=5 

               Nmax= 265 

               le= 33 

       ( Nmax – b*le ) = (265 – 5*33) =  100      0‘s     

        appended 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To assure sparseness and lower interference 

an efficient encoding and memorization of events 

and episodes is required in DG. Any memory model 

of DG   should be able to separate distinct events and 

episodes with a well-defined match scheme.[27]  

In the present work the process of DG sub 

network is modelled using ART Neural network 

capable of solving the stability and plasticity 

dilemma[29-32]. The Model is implemented by 

ART2 ANN using Nmax input neurons. As in the 

proposed model each episode(episodic pattern) is 

represented as  episodic pattern X a Nmax 

Dimensional binary vector. Nmax is generally taken 

equal to the highest length episode in the learning 

sample.( In this work Nmax=265, as highest length 

coded episode is of 265 bit long).The episodic 

patterns are presented through EC to DG  

(ECDG). 

 

2.2 DG ARCHITECTURE 

DG is modelled by ART2 ANN which 

comprises of two layers of neuronal field  F1 and F2.  

F1 is Input Field and F2 is category field. The input 

from EC is presented to F1 layer and neurons at F1 

and F2 layer are connected in both way,  bottom-up  

and top down manner. Number of neurons in F1 and 

F2 layers are equal to Nmax  and total number of 

clusters(  number of episodes to be encoded and 

memorized). As F1 and F2 layers are fully connected 

through synaptic links in both way the link weights 

From F1 F2 is denoted by Wij and that from F2 

F1 is denoted by Vji. 

The vigilance parameter is most important 

regarding separation and minimization of 

interference between episodes. Higher the vigilance 

parameter value higher the separation and vise-versa. 

The Network parameters are as described in Table 2. 

 Following are the network inputs and architecture 

description: 

Input vector:  I=[x1,x2,x3,……………..,xn]      

                        N=Nmax 

Input Field: F1 layer of DG subnetwork works as 

input field. Number of neurons in  F1 =  Nmax 

Category Field: layer F2 is category field.Number 

of neurons in F2 are taken to be maximum number 

of episodes to be encoded  and memorized  in DG 

sub network. 

 

Node activation and competition: Nodes in F2 

layer are activated according to the competition 

process. When a new episode is presented via F1 to 

F2 during competitive learning process the highest 

response node is selected among all the activated 

nodes.  If the selected node qualifies the vigilance 

criteria. Then the wights are updated according to 

updating schema of uncommitted or committed 

node. If it fails in qualifying the vigilance criteria the 

second highest response activated node is selected 

and  the process is repeated unless all activated 

nodes are checked. If no activated node is selected.  

A new node  is set to be activated and weights are 

updated according to uncommitted node weight 

updating schema. The detailed process of weight 

updating is not discussed here. It can be referred in 

[28]. 

Dentate Gyrus(DG) is represented by above 

stated two layers F1 and F2. Synapses from EC 

DG presents input to F1 layer neuron nodes of DG . 

The layer F1 presents the Input to F2 layer of DG. 

When resonance occurs the episodic pattern is 

encoded within DG and memorized with sufficient 

separation.  The output of F2 is output of DG 

presented to CA3 region of hippocampus formation. 

The episodic patterns thus encoded and 

memorized by DG are less correlated, highly 

separated, memorized in sparse manner and with 

lowest interference for higher value of vigilance 

parameter. 

 

2.3 DATASET AND MODEL SIMULATION 

PARAMETERS 

To simulate the DG process model 

presented in this work, total five events have been 

used. Episodes of various events comprises of ‗who‘, 

‗what‘, ‗whom‘, ‗where‘, ‗when‘ type of episodic 

information in various episodic patterns. Total 

Output Encoded Episode Epc = 

1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1 

1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 

1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 

0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 

0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 0 1 

0 0 0 0 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 
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number of episodes and temporal categorization is 

shown in Table 1. 

Table 1. Episodic events and episodes. 

S. 

No. 
Event 

Temporal 

categorizati

on of event 

Number of 

episodes 

(samples) 

Total 

number 

of 

episodes 

1 give 

gave 15 

31 

Will give 16 

2 walk walking 16 16 

3 play Will play 16 16 

4 sing singing 16 16 

5 eat ate 16 16 

Total number of episodes(samples) 95 

 

           DG network parameter values used in this 

simulation are shown in Table 3. 

 

Table 2. DG Subnetwork parameters (ART2-        

               Network parameters) 

S.N

o. 

Paramet

ers 
Description 

Typical 

values 

Actual 

values used 

in DG 

Network 

1 n Number of 

input 

units(dime

nsion of 

input 

vector) 

User 

defined 

295 

2 o Number of 

cluster 

units 

(neurons at 

F2 layer) 

User 

defined 

95 

3 a Fixed 

weight in 

F1 layer 

10 10(fixed) 

4 b Fixed 

weight in 

F1 layer 

10 10(fixed) 

5 c Fixed 

weight 

used in 

testing for 

reset 

0.1 0.1(fixed) 

6 d Activation 0.95 0.9(fixed) 

of winning 

F2 node 

7 e Parameter 

to prevent 

division by 

zero when 

norm of 

vector is 

zero 

Negligi

ble 

value 

0.000001(f

ixed) 

8 θ Noise 

suppressio

n 

parameter 

1/√n 0 

9 α Learning 

rate 

User 

defined 

Varying 

between [0  

1] 

10 ρ Vigilance 

parameter 

User 

defined 

Varying 

between [0  

1] 

11 Vji(0) Initial top 

down 

weights  ( 

F2-F1) 

0 0 

12 Wij(0) Initial 

bottom up 

weights 

(F1- F2) 

Wij(0) 

< 1/(1-

d) √n 

0.5/(1-d) 

√n 

 

C and d should be chosen so that  c*d/(1-d)<=1. 

 

III. RESULTS AND ANALYSIS 
In this paper we have presented an encoding 

algorithm for binary encoding of episodes being 

fetch from ECDG. It is assumed that each 

perceived episode can be represented in sentential 

form of any language (here English language is 

used). Total number of letters are 26 having index 

from 1 to 26 for A to Z. for space $ is used and index 

used for it is 0. As there are 27 total indexes for the 

letters being used in sentential representation of 

episode a 5-bit binary representation is used for each 

letter. A total of 5 events and 95 episodes are used to 

evaluate the model. While encoding the episodes 

used in this model using encoding algorithm 

presented in this paper highest encoded episode 

length is 265 bit binary string and that is the value of 

Nmax (i.e. Nmax =265). Rest of the episodes are of 

lesser length than 265. Hence, the difference bit 

number is padded with 0s to make the binary length 

of each episode equal to Nmax to achieve 

uniformity. Uniformly encoded episodic patterns are 

presented via EC to DG model presented in this 

paper. 

The DG model is implemented by ART 

neural networks and parameters are as shown in 

Table 3. The episodes of all 5 events are presented to 

the DG network model proposed in this paper.
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Figure 4. Episodic separation for different values of vigilance parameter 

 

 
Figure 5. Event separation for different values of vigilance parameter 
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 Figure 6. Episodic separation comparison for different values of vigilance parameter corresponding to 

similarity in episodes 

 

The episode separation and event 

separations are analysed.for different values of rho 

from [0,1], for rho value between 0 to 0.85, 0% 

separation is achieved independent of similarity 

between episodes or events. Hence we have shown 

the episodic and event separation for rho values 

between 0.85 to 1.  

In Fig.4 the episode separation is shown for     

rho =0.85 to 1, independent of similarity between 

episodes. For rho values less than 0.9, % separation 

achieved is very low i.e. <15%. For rho values 

greater than 0.9 higher separation is achieved. 

Depending upon the similarities of episodes for 

higher values of rho from 0.9 to 1, higher separation 

and lower interference is achieved. As rho values is 

correlated to attention perceiving the episode, hence 

higher the attention, higher the separation in 

episodes encoded and stored at DG subregion of 

hippocampus.  

In Fig.5, The event separation is shown for 

rho=0.85 to 1 as lower values shows 0% separation 

in events achieved by DG model. The event 

separation for rho values less than 0.9 is very low < 

20% but for values from 0.9 to 1 it is very high from 

78% to 100% achieved by the DG model which 

even for low attentions events are well separated 

compared to episodes as achieved by the DG model. 

In Fig.6, episode separation for rho values 

0.85 to 1 is shown alongwith % similarity from 

100% to 0% similarity, for rho values 0.85 to 0.94 

for the similarity in episodes more than 50% the 

separation increases from 5% upto 60% for rho 

values from from 0.85 to 0.94. For rho values higher 

than 0.94 to 0.97 for similarity in episodes greater 

than 80%, separation achieved almost 0%, for 
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similarity less than 80% and greater than 40% it is 

upto 20% and for lower similarity values it achieves 

20% to 80%, separation for rho values from 0.94 to 

0.97. For rho values from 0.98 to 1 the % separation 

achieved is high for similarity less than 90% which 

is 10% to 90% separation for rho value 0.98 for 

similarity less than 90% below to 0%. For rho value 

0.99 for similarity less than 90% its value high upto 

60% and almost similarly increases upto 95% for 

similarities less than 90% below to 0%. For rho 

value 1 except 100% similarity separation  achieved 

is 100%.  

Thus by the above results it is clear that 

separation achieved by DG model presented in this 

paper shows higher separation and low interface in 

DG encodes the episodes of various events with 

variable similarity and separation for lower to higher 

attention. 

 

IV. CONCLUSION 
In this paper we have used a new encoding 

scheme for episodes assuming that each perceived 

episode can be represented in sentential form of any 

language. Depending upon the language 

characteristic each episode can be encoded using the 

binary encoding scheme presented in this paper. The 

episodes encoded using this scheme is of uniform 

length.Here we have presented computational model 

of DG which is capable enough to incorporate the 

sparseness and separation capability shown by the 

DG sub region of the hippocampus. The model 

presented in this paper is dependent on the attention 

parameter. At appropriate value of vigilance 

parameter correlated to attention model is capable of 

separating events at lower values and episodes at 

higher values. In the future directions of work the 

work can be explored for other subregions of 

hippocampus as well as functionalities regarding 

episodic memory.  
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